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Coherence theory is used to analyze the statistical properties of ocean-acoustic intensity fluctuations
measured after saturated multipath propagation. Previous analyses in this area have been implicitly
limited to certain special cases for which the time-bandwidth product of the field received from a
given source is unity. In this paper, the statistical description is extended and generalized to be a
function of measurement time and temporal coherence. As a result, the well known 5.6-dB
transmission loséTL) standard deviation of Dyer is found to be a special case of a more general TL
standard deviation that approximates 4.34(&dut) dB when the time-bandwidth produgtis large.
Therefore, the TL standard deviation approaches zero for incregsings it must in the
deterministic limit of an arbitrarily large sample size. A similar generalization is obtained for the TL
mean, from which it is found that the sonar equation must be correcteddatependent bias that
vanishes in the deterministic limit of large Additionally, asymptotic analysis shows that intensity
statistics in the saturated region converge to a log-normal distribution, whkerkeis typically
sufficient for the log-normal approximation to be made.

PACS numbers: 43.30.Re, 43.30Vh, 43.30Wi, 43.30 XABP]

INTRODUCTION over many independent samples. Such averaging is often es-
sential when the goal is to reduce the variance of a measure-

As long ago as World War Il, marine physicists under )
ment, or subsequent parameter estimate, enough for the error

the National Defense Research Committebserved that tall withi | e threshol
natural disturbances, such as underwater turbulence ardf f@ll within a tolerable threshold.

passing surface or internal gravity waves, often place the ~Much o_fl;[he literature in ocean-acoustic transmission
ocean-acoustic waveguide in such a state of flux that a si scintillatiorP 1 closely follows or is based upon the classic

nal, deterministic when transmitted from the source, be&nalysis of Dye'll’z who, like his predecessor Be.rgma]nn,
comes fully randomized after propagating only several chanfoncluded that in many circumstances a Rayleigh scatter
nel depths away in range to a receiver. When not prope”yhannel can be gsed to describe the randpm fluctqatlons of
accounted for, such randomization can severely degrade tffBeasured intensity. In order to extend this analysis to the
accuracy of an experimental measure, as well as any pararf@se Of variable time-bandwidth product, some specific re-
eter estimates based upon this measure. However, with tifallts from Dyer's “Statistics of sound propagation in the
knowledge that the field is fully randomized, and thereby carPcean”'? are used as a guide line. First, techniques well
be described by a circular complex Gaussian randongstablished in coherence theory are used to formulate the
(CCGR ) variable? many useful statistical properties of sub- statistical properties of averaged intensity in terms of mea-
sequent intensity measurements and parameter estimates ¢aiement time and temporal coherence. This is done in Sec.
be readily deduced by respective applications of coherencewhere it is also shown that the “short-time average™ of
theory and estimation theory. Dyer corresponds to a measurement that has a time-
The CCGR field assumption has a long history. In thebandwidth product of unity and is therefore by definition
analysis of random signals and noise, it has been legitimateljpstantaneous. In Sec. Il, the distribution for the logarithm of
made when the central limit theorem applies, such as in thaveraged intensity is given as a function of measurement
scattering of radiation from fluctuating targétd surfaces time and temporal coherence. As a result, Dyer’s well known
with wavelength-scale roughnebn the present context, it 5.6 dB transmission los§L) standard deviation and 2.5-dB
is the basis for the Rayleigh scatter channel that is not onlpugmentative bias in mean TL are found to be valid only for
frequently cited in communication theotygut has also been the special case of an instantaneous measurement. The gen-
used to describe the saturated re§iohmultipath propaga- eral TL standard deviation and mean have forms that, respec-
tion in the ocean for many yeatsrevious analyses in this tively, approach zero and-10 logthe mean-square trans-
area, however, have been implicitly limited to certain speciamission), as they must, in the deterministic limit of
cases for which the time-bandwidth product of the field re-increasing time-bandwidth product. Further analysis along
ceived from a given source is unity. In this paper, the statisthis line indicates that the logarithm of averaged intensity has
tical formulation is extended and generalized to be a functiora distribution that rapidly converges to a Gaussian for time-
of measurement time and temporal coherence. This moreandwidth products exceeding four. The significance of this
general framework is therefore highly relevant to modernparticular finding is that, by invocation of the central limit
ocean-acoustic sonar and communication systems that ertheorem for sufficiently large time-bandwidth products, in-
ploy time-bandwidth products exceeding unity, or averagdensity statistics in the saturated region can legitimately be
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described as log-normal, which runs counter to some previeften employed in ocean-acoustic processing but may be det-
ous suggestion¥. rimental to subsequent parameter estimates.
Additionally, certain special assumptions were made in
the derivation of a well-known probability distribution for 1. INTENSITY STATISTICS AS A FUNCTION OF
the “noise of multiple distant sources™ that limits its gen- MEASUREMENT TIME AND TEMPORAL COHERENCE

eral usefulness. Specifically, thet_ensity contribution of _ While the expected intensity of a CCGR field may, for
each source was assumed to be independent, exponentially o tical purposes, be temporally invariant during a given
distributed, and comprised of a single tone spectrally disjoinget of measurements, the experimental measures of intensity
from the simultaneously measured tones of the other sourcegye themselves still subject to statistical fluctuation regard-
These assumptions imply that the time-bandwidth product ofgss of the amount of finite-time averaging employed. How-
the total received field must equal the number of independentyer, under the more stringent assumption of stationrity,
sources, and the measurement period must be such that th@yny statistical properties of the these fluctuations become
spectral contribution of each tone is resolvable according tehyariant and can be readily expressed in terms of the mea-
the Rayleigh criteriort’ In Sec. Il of the present paper, the surement averaging time and the coherence of the received
more general assumption is made that the measfietds  field. As a first step in this direction, the distribution for the
from the independent sources are independent CCGR varaverage intensity measured from a CCGR field, along with
ables, and no restriction is made on their spectra except thahe first few moments, are derived in terms of the time-
for practical considerations, they have finite bandwidth. Thebandwidth product of the received field. The derivation, pre-
intensity distribution for the *“noise of multiple distant sented in Sec. | A, mechanically parallels that given in the
sources” derived under this more general assumption isptics literaturé® for the statistical properties of polarized
given as a function of the measurement time and tempordhermal light. The way that this analysis extends previously
coherence of the total received field. Similar differences beéderived ocean-acoustic intensity statistics is discussed in Sec.
tween the distributions for a “signal plus noisé? derived | B. A brief summary of relevant literature in acoustics, ra-
in previous work and those derived here are discussed. dar, and optics is then given in Sec. | C.

The statistics' of averages of independent i.ntensityA_ The gamma distribution
samples are also investigated. Such averages are widely used
in a variety of ocean acoustic applications. For example, in  Let the field measured at a receiver be denoted by
displaying the beamformed output of a hydrophone array, ig(t)exp(—i2mft). The envelope(t) contains the stochastic
is common practice to reduce the variance by averaging theroperties of the field modulated at constant carrier fre-
uncorrelated intensities received on adjacent nonoverlappingtencyfc- Let both the modulated and demodulated fields
beams Similarly, it is sometimes convenient to average ¢ CCGR variables such that the redt) and imaginary
independent multipath arrivals that are temporally disjoint,y(t) cpmponents of _the envglope(t) are independent
or to average independent measurements of backscatter ussian random vanables. with zero mean, .and the same
reduce the variance in scattering strength or target strengt\ﬁ’mance' Therefore, at any '”?taf"“he probability that the
estimation**~*®In Sec. IV, the probability distributions for envelope will have valug=x+iy is
such amalgamated intensity measurements are investigated. x2+y?
The probability distribution for the difference between two ~ P(X¥)= 27(x%) exp{ T 203y
intensity measurements is then given in Sec. V to address the
issue of monitoring a moving source or scatterer. for  —oo<x,y<es, @

A brief discussion of classical parameter resolutionwhere the variance ofz is given by (x2>+(y2> and
bounds and Fisher information is then provided in Sec. VI<X2>:<y2>_ Rewriting Eq.(1) in polar coordinates, the uni-
for measurements obeying the various distributions preform phase distribution can be integrated out. The squared
sented. This is used to show that parameter resolution isiagnitude of the field then defines the instantaneous inten-
highly dependent upon the way that intensity measurementsity I (t) =|z(t)|?, which obeys an exponential distribution
are made. For example, the logarithmic measures commonly

)==exp{ —%, for 0<| <o,

used in ocean acoustics, such as scattering strength, target P(l

strength and TL, must be derived from a corrected version of

the sonar equation that accounts for an inherent bias depen-

dent on the time-bandwidth product of the intensity average. =0, elsewhere, @

This bias attains its maximum magnitude of 2.5 dB for anyith meanl_=(l>=2<x2> and varianceﬁz=<lz>—<l)2. An
instantaneous sample and only vanishes in the deterministigssential quality of this exponential form is that the most
limit of large time-bandwidth product. The logarithmic mea- probable value for instantaneous intensity is the same as the
sures then have mean-square errors that approximate thgost probable value for the field, namely zero.

Cramer—Rao lower bound with increasing accuracy for in-  While the concept of an instantaneous intensity will
creasing time-bandwidth product. Finally, a quantitativepresently be shown to be more than a mere mathematical
measure is given for the amount of information that can bestepping stone, it certainly must be used in this way to for-
lost by certain widely practiced procedures for reducing a seinulate the statistical properties of actual intensity measure-
of measurements to a single mean statistic. Such reduction leents. This is because actual intensity measurements can
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only be made over a finite time period but still need to be 1600
expressed in terms of the instantaneous fluctuations of an
underlying random field. For example, let the average inten-

sity measured over time interval be
100 |

1 (T2
W= = f I(t)dt. 3

T ot p
A measure of the nhumber of independent intensity fluctua-
tions or coherence cellg averaged during the periot is S
given by the squared-mean-to-variance ratio or signal-to- v
noise ratio(SNR) of the measureme. Under the assump- 72
tion that the field undergoes stationary fluctuations, such that it . .
its autocorrelationz* (t)z(t+ 7)) is only a function of the 1 10 100 1000
time lag 7 and not the absolute time referericeghe SNR of v,

W is expressible in terms of the temporal coherence function
FIG. 1. Time-bandwidth produgt as a function ofT/7., whereT is the

(Z* (t)z(t+ 7')> measurement period and is the intrinsic coherence time scale of the fluc-
()= W, (4) tuating field. The solid line shows this dependence when the field has a
rectangular frequency spectrum. The dashed line shows the linear asymptote
and the triangle function for large T/ 7 .
T T T
Al=|=1—|x, for |z =1, L .
T T T 5) First, it is useful to consider the general dependenge of
A T o | h on T/ 7. as illustrated in a particular example. This depen-
7]~ €isewnere, dence is given in Fig. 1 for the case in whieft) has a

. . . rectangular frequency spectrum such tk&t(f )= 7, for
which arises from auto-convolution of a rectangular Meaif|<1/(2r.) and ./ (f )=0 elsewhere,”(f ) being the
surement window of length. Specifically, the SNR oV, or Fourier trz;nsform ofy(r) which takes th'é form
equivalently the number of independent intensity fluctuations

averaged during the measurement tiimes not restricted to

discrete values but rather is defined by the continuous vari- sin(w/7c)
1) =— ()
able w7l 7
(W)? 1 (= [ .
Ko WB —(Wy2 | T J,xA T/I7(Dlfdr) . (®) i easy to verify that in an estimate of the spectrunz(e]

o . ) over finite time windowT, only u independent frequency
where th2e last equality is obtained using CCGR momentomponents can be resolved by the Rayleigh criteria in the
factoring: . . _ _ interval | f|<1/(27.), which equals the number of temporal

Apart from experimental intrusion, the random field un- samples attainable at the Nyquist rafén this case, as in the
dergoes fluctuations that occur over a characteristic pegiod general case of an integrable spectrymmeasures the time-
referred to as its coherence time scale. A useful measure @f3ngwidth product of the field received over finite-time win-

the coherence time scale is dow T, just as the ratiow/T measures its bandwidth. For
o example, wheru is linearly dependent upom, as it is for
Te= J: |y(7)|%d. (7)  T>r,, the measured bandwidi/T is a good approxima-

tion to the intrinsic bandwidth of the fluctuating fieldr1/ In
Noting the infinite integration limits in this definition, one the opposite extreme when>T, the measured bandwidth
would expect that more accurate experimental estimates of of roughly 1T is so dominated by the effect of temporal
would be obtained for longer measurement timiesThis is  windowing that it cannot provide useful information about
certainly the case, and can be easily shown by considerinthe coherence time scale of the fluctuating figll. more

the limiting form of Eq.(6) for T> 7. Here, the number of rigorous discussion of the time-bandwidth product can be
coherence cells is well approximated by the linear relationfound in Ref. 18.

ship u=T/ 7. between the measurement period and coher- In this context, if the continuous time averagéis re-
ence time scale. In the opposite extreme of a measuremeptaced by an ensemble averagewofndependent and iden-
time much less than the field’s intrinsic coherence time scaldjcally distributed instantaneous intensity samples from the
such thafT< 7., the integral of Eq(6) approaches its mini- same data, both the mean and variance of the resulting en-
mum value of unity, ange=1 becomes a very good approxi- semble average are identical to those of the original continu-
mation. In this case, the average intensity measurelfveist  ous average. Furthermore, the probability distribution for the
nearly instantaneous, and for practical purposes obeys thensemble average is readily obtained as the inverse Fourier
exponential distribution of E¢(2), but not in the vicinity of  transformation of the characteristic functfofor instanta-
zero unlessu is identically equal to one, as will be demon- neous intensity raised to the power This process leads to
strated presently. the well-known gamma distribution
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(M/U“W“_l exp{—,u(W/W} A (my (W), m,(W)) with the same mean and variance, an

P(W)= () , for O=sW<ee, analytic proof has been supplied by Mandel, who demon-
K strated the asymptotic convergence of all the corresponding
=0, elsewhere, 9 moments® A compelling but less complete demonstration

. o can be made by comparison of the kurtadgieakednegs
that generally provides an excellent approximation to the ex-

act distribution for averaged intensity/, which has a much o My(9)

less convenient form, as is discussed in detail in Ref. 2. For " [m,(9)]?’ (129
example, Eq(9) converges to the exact distribution ff in

both the limits of T> 7, and T<7.. However, some slight and skew

discrepancy between this approximate form and the exact ma( )

form exists wheri is approximately equal ta, . = Ty (9) 72" (12b)

When instantaneous intensity is digitally sampled at the
Nyquist rate, as is common practice, H§) is the exact of these distributions, where the necessary moments are
distribution for discrete-time-averaged intensity. Equationreadily obtained upon differentiation of the appropriate char-
(9), therefore, is essential to the present analysis becausedgteristic functions. For the Gaussian distribution, this pro-
provides a distribution for fluctuating intensity in terms of cedure leads to a kurtos#, =3, and a skew, =0, the latter
two quantities that may be estimated with great accuracy anighdicating symmetry in the distribution of probability about
relative ease in an experimental situation, namely the meafie mean. For the gamma distribution, the kurtosis
intensityl and the time-bandwidth produgtof the measure- 6
ment. Additionally, because the average intensityhas a Aw=3+—, (139
variance ()%u that depends upon the meanits fluctua- M
tions depend on the expected value of the signal and thergmd skew
fore fall under the category afignal-dependemtoise.

Returning again to the issue of measuring instantaneous 2
intensity in an actual experiment, upon inspection of (g, "W:\/_—M’
it becomes apparent that=1 is the only value foru that
does not exclude the possibility of measuring an averag8ave asymptotically Gaussian behavior for1, or roughly
intensityW that can be identically zero. For all other values, #=10 in practice. However, averaged intensity is positive
including  very near to, but not identically unity, the instan- Semidefinite, and therefore its distribution never spans the
taneous intensity passes through but does not remain at tiill domain of a Gaussian, except arguably in the mathemati-
isolated value of zero during the measurement time. Thé&al limit of arbitrarily large .
positive-semidgfi_nite_ nature of instantaneous_ intensity theg Application to ocean-acoustic transmission
insures that a finite-time average can never yield an average
value that is identically zero. The forgoing may explain why, ~ As noted during its development, the above formulation
in many experimental situations of high resolution and largdor the statistical properties of average intensity is based

sample population, finely binned histograms of fluctuatinguPon the assumption that the underlying acoustic field at the
intensity may follow the exponential distribution very receiver undergoes CCGR fluctuations. Due to the recur-

closely except in the vicinity of the origin, where the fre- rence of CCGR fields in such a wide variety of otherwise
quency of samples decays to zero rather than growing to #nrelated realizations of stochastic wave propagation, which
maximum value. follows from the central limit theorem, it is often difficult to

To investigate the asymptotic properties of the gammdletermine the cause of uncertainty in a particular saturated

(13b

nient to employ the general notation ocean acoustics, such external information has been histori-
' cally collected, and a set of basic causes for field fluctuations
mi(3) =([F—my(I)]'), (100 can be readily cited.

Specifically, the randomization of acoustic fields in the
ocean typically arises frortl) incoherent source fluctuation,
(2) fluctuation of a scatterek3) relative motion between a
scatterer and source or receiver in a waveguifjerelative
motion between source and receiver in a waveguejuc-
tuation of the waveguide boundary, as for example due to

for the central moments of integer ordér-1, where
m,(9)=(9), and the random variabl& obeys an arbitrary
probability distribution. It is also convenient to employ the
compact notatiorf¢(m,(W),u) to denote the gamma distri-
bution, and 4 (m;(#7),m,(7)) to denote the Gaussian distri-

bution surface waves6) medium scintillation or fluctuation in the
1 [ 7—my(7)]? index of refraction due to such phenomenon as internal
P,(n)= m@ exp( - T()) (1) waves or turbulence. Typically the last three are associated
2 27 with transmission scintillation, which becomes saturated af-
where —oo< p<oo, ter relatively short propagation ranges, greater than a wave-

While it is not difficult, with the aid of a digital com- guide depth, if many more than a single acoustic mode con-
puter, to computationally verify that for large the gamma tributes significantly to the received field, in keeping with the
distribution <(my(W),n) tends toward a Gaussian central limit theorem. The origin of the fluctuation in these
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cases is the change in the interference structure of the wave- With a minor change of variables, the same distribution
guide brought on by the given relative motions, which thereswas obtained independently by Swerling in his case Il prob-
fore typically need to exceed only a wavelength scale imability for the radar detection of a fluctuating target by a
random amplitude for saturation to occur. For examplemean-square processor which integrates over returns from
Dyer'? has noted that his model of transmission scintillationactive pulses.An ocean-acoustic confirmation of Swerling’s
“applies to an ensemble of experiments that contains signifiwork has apparently been given in the underwater target
cant rangewisenotionof the source with respect to tifeul-  scattering histograms of Dahl and Mathi€8rThose histo-
tipath interferencestructure,” as in casé4) above. How- grams were derived by peak amplitude analysis, correspond-
ever, it is the point of this paper that sueiotioncontributes  ing to a time-bandwidth product of unity, for which the am-
to the temporal fluctuations whose time scale must be complitude distribution is Rayleigh and the intensity distribution
pared to the measurement averaging time to obtain genera exponential. Similar concepts and distributions have been
and accurate statistics. Even early researchers in oceansed to describe the intensity statistics of laser beam fluctua-
acoustics found that these fluctuations can occur over exions induced by propagation through the turbulent atmo-
tremely short periods, less than 1 nlisp highlighting the  sphere. In that community the model is known as the “single
need for the more general formulation provided here. scatter model” of atmospheric scintillatiéh??

The validity of the CCGR field assumption can easily be Images derived from CCGR fields exhibit the same kind
tested in practice by examining the statistics of the field re-of signal-dependent noise described by the statistical formu-
ceived by a hydrophone over time. The extension to previoutation given in Sec. | A. The noise in such images is com-
work lies in the realization that the temporal coherence funcmonly referred to aspecklewhen the time-bandwidth prod-
tion or spectrum at the receiver should also be estimated toct of the measurement is near unity, for which the intensity
determine the time-bandwidth product of the measuremenfluctuations attain their largest variance. Such noise is often
This then leads to the general distribution for averaged infound in synthetic aperture radé8AR), medical ultra sound,
tensity as a function of measurement time and temporal coside-scan sonar and towed-array reverberation images be-
herence given here in E¢Q). cause the associated active systems typically irradiate terrain

In this context, the exponential distribution, given in Eq. of wavelength-scale roughness with narrow-band waveforms
(9) of Ref. 12 for intensity measured in a “short-time aver- of low time-bandwidth product.
age,” is only valid for measurements of instantaneous inten-
sity whereu=1, and not for longer stationary averaging pe- Il. STATISTICS OF LOGARITHMIC INTENSITY
riods for which u>1. While Dyer defines a “short-time MEASURES AND TRANSMISSION LOSS
average” as “... an average taken over a time long as com-
pared to Zr/w (the carrier frequency’s perigpdbut much less
than the stationarity time ...2 this definition is not suffi-
cient to meet the necessary requirement for the exponenti
intensity distribution to be valid, namely that=1. If the
“coherence time” were substituted for the ‘“stationarity
time” in this definition, it would be stated correctly in the
present context.

It is traditional in ocean-acoustics, and many other dis-
ciplines, to measure fluctuating intensity in logarithmic units,
allthough the reasons given for such a measure often seem to
?ierge on scientific folklore. For example, reference is often
madé® to the apparent logarithmic response of human audi-
tory and visual perception to intensity stimufifshe impli-
cation being that such a response has been optimized by
Eﬂllions of years of evolution. However, a particularly com-

| Tfhe conter:jtl_or: of Ref_. 12 tgat thedvartla?ce of tfh;ahnaturta elling quantitative advantage of the logarithmic measure
og of averaged intensity Is “independent of any of the Met-¢ ;a0 can be readily cited. That is, for the average in-

nes O.f the problem, therefore, mqs.t be putinto perSpecwe‘tensity of a fully randomized Gaussian field, a logarithmic
This is because the metric describing the number of coher-

llsa in the intensit imolicitl ianed measure homomorphically transforms signal-dependent

ence ceflsu In e intensity average was Implicitly assigned yyise into additive signal-independent noise. Consequently,
to unity. The relevance of these issues to the well known 5.($
I

4B t ission | tandard deviati f that ref -optimal methods for finding expected signals or patterns in
ransmission Joss standard deviation ot that reterence W'mdependent additive noise, which also happen to be well
be examined in Sec. Il.

established, can be directly applied when the fluctuating in-
tensity of a CCGR field is measured in logarithmic units.

In this context, a theoretical foundation for logarithmic

Almost immediately after Bergmann's analysis of measures of fluctuating intensity has recently been derived in
ocean-acoustic intensity fluctuations for the war effort, andhe optics literaturé® It is based upon criteria for optimal
much earlier than its unclassified appearance more than Jtattern recognition that follow from statistical estimation,
years later, RicE showed that the gamma distribution could optimal filter and information theory. Because this theory
be used to describe the statistical properties exhibited by theupports the use of traditional logarithmic measures of fluc-
finite time average of an exponentially distributed randomtuating intensity, it should not be surprising that the probabil-
variable. Shortly thereafter, Mand®hpplied Rice’s work in ity distributions upon which it is based also describe the
his demonstration that the time-integrated intensity of polarstatistics of ocean-acoustic TL measurements. This formula-
ized thermal light undergoes fluctuations that can be weltion is presented here in Sec. Il A. The way it extends pre-
described by the gamma distribution, which has lain thevious work is discussed in Sec. Il B. A brief summary of
foundation for the formulation given in Sec. | A of the relevant literature in acoustics and optics is given in Sec.
present paper. Il C.

C. Historical notes
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In a tangential point, the question of whether the theory
of Ref. 25 has any bearing on the logarithmic response of
human auditory and visual perception to intensity stimulus
has been recently raisé@iprimarily because the optical and

7

Exp-Gamma
——- Gamma

acoustics fields received by the eye and ear often undergo
CCGR fluctuations.

A. The exponential-gamma distribution

The intensity levelis defined by

w
L=In —, (14
Iref
wherel . is a reference intensity such that the normalized
mean intensity id =1/ . Following Bayes’ theorem, the
gamma distribution for the measuremeéM leads to the
exponential-gamma distribution
M) (eh)* L expl— (el o) +L .
P(L):(M 0)*(e") pl—u(e /o) }, R

~ Exp-Gamma
F(’u’) h ~ ——- Gamma

(15) | S~

for the log-transformed statistit., which is denoted by
&% ((L),u) for notational convenience. The central mo- 3,
ments of the exponential-gamma distribution are most ©
readily obtained by direct integration with respect to the vari-
ableW. Such a process yields the expected intensity level

(Ly=In(lp)+ ¢(p)—In u, (169
and variance

(L= (L)y*=2(2,u),

which in general is not inversely proportional to the time-

bandwidth productu. Here, y{u) is Euler's psi functioA’”  FIG. 2. (a) Kurtosis for the exponential-gamma distribution in solid line and
and §(2,,u) is Riemann’s zeta functioﬁ Formulas defining for the gamma distribution in dashed line. The Gaussian kurtosis (is) 3.

h ial f i . in A dix A. F _Skew for the exponential-gamma distribution in solid line and for the
these special func IOHS. are gllvefn In Appendix A. ‘?r ex gamma distribution in dashed line. The Gaussian skew is zero.
ample,£(2,1)=74/6, and in the limit ag:>1, the expectation

value ofL converges to Ifi;) while the variance/(2,u) ap- o _ ) _
proaches . for recognizing the nonstationary trend is provided by

It is of great practical significance that intensity level Matched filtering the time series with hypothetical trends in
L has a variance that does not depend on the expected inteffi€ l0g-transformed  domatfi. This technique has also
sity |, as average intensity does, but only on the time- Proven t402l§e valuable for recognizing patterns in active sonar
bandwidth produc of the measurement. For example, sup-images.***Thespecklefound in such images, which is most
pose that the instantaneous intensity of a CCGR field i®ronounced for low time-bandwidth product measures, arises
practically stationary over short periods, but not over longffom .th_e same CCGR field qucFuatlons descrllbed here. Char-
periods where some trend in expected intensity emerge&cteristic §cales Qf the nonstationary trends in both saturated
Further suppose that this trend is to be measured by tim@tensity time series and speckled images are best measured
series analysis, where average intensity samples are consedythe logarithmic domaif® _ _ _
tively collected over short-term stationary periods and then ~Some of the asymptotic properties of the exponential-
concatenated. The resulting intensity time series will have 4amma distribution can be ascertained by considering its
standard deviation that is directly proportional to the localkurtosis
value of expected intensity, making comparison of samples em)

for —o<L <o,

(16b) (b; 1 1;? 100

with different expectation values difficult. Conversion to /L:3+6m, (1739
logarithmic units, however, homomorphically transforms !

such signal-dependent noise into additive signal-independeand skew

noise. The log-transformed time series has a uniform stan- {(3,)

dard deviation when the time-bandwidth product of the mea- . =— ZW—, (17b

surement is chosen to be constant for all samples. Well-
established techniques for processing signals in additivéor increasingu. Apparently, the exponential-gamma ap-
noise are then appropriate. In particular, the optimal methogroaches a Gaussian with the same mean and variance more
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rapidly than the gamma distribution, as is evident after in- 4
spection of the curves provided in Fig. 2. For practical pur-
poses, the criterion that>4 appears to be sufficient for 5| L StandDev]
£%((L),u) to be approximated by’ ((L),(L?)—(L)?). ——- TL Mean

The Gaussian asymptote of the exponential-gamma dis- | T ASdsgnit
tribution can also be obtained by analytic means. After some *[\ )
straight forward algebraic manipulation, E45) can be re-
written as

/_Lﬂ J— N
P(L)= (m) exp(u{[L— |ﬂ(|o)]—eXdL—|n(|o)](i)é)

The argument of the interior exponential can then be ex-
panded into a Taylor series such that

u o 01 1.0 100 1000
eXF<_§|L—|n(|o)|2), g

(19 FIG. 3. Transmission los§TL) standard deviation sqKfi?)—(H)? in

— 2529 1 : . solid line and TL mearH) for 1,=1 in dashed line as a function of time-
for |L__|n(| o_)|<3- “*This can be used as a relatively C“_Jde bandwidth produciw. The asymptotic dependence of the TL standard de-
approximation even foru=1 because the corresponding viation for largew, (10 loge)sqr{1/u], is also given in dot-dashed line.

standard deviation df is then#/,6=1.3. Asu increases the
approximation becomes better. By use of Stirling’s forritla

o

P<L>~(F’(‘M) exp(— 1)

for u>1, Eq.(19) transforms to the Gaussian dard deviation and 2.5-dB augmentative bias in mean TL are
w | M2 u o only valid for an instantaneous measurement, for which
P(L)m(z—) exp( -5 |L—In(|o)|2), (20) p=1, and not for longer stationary averages as might be

a

inferred from Ref. 12. As the time-bandwidth product in-
so that the exponential-gamma distribution for the intensitycreases, the TL standard deviation asymptotically approaches
level L is distributed according to/(In(ly),1/u) for large  zero along the curve(10loge)sqr{l/u], or roughly
w. Therefore, as the time-bandwidth product of the measure4.34sqrft1/x], while the TL mean approaches10 log (the
ment becomes large, the expected intensity level approachesean-square transmissjoas it must in the deterministic
the logarithm of expected intensity, the intensity level vari-limit of an arbitrarily large sample size. Additionally, the
ance approaches the inverse time-bandwidth product, and thgymptotic analysis of the previous section shows that TL
exponential-gamma distribution converges to a Gaussian. statistics in the saturated region can legitimately be described
as normal for measurement time-bandwidth products exceed-
B. Application to ocean-acoustic transmission loss ing four, which runs counter to some previous suggestions
statistics implicitly based upon unity time-bandwidth measut®s.
Due to its simple linear dependence on intensity lével
transmission los$#l, sampled after saturated ocean-acoustic
propagation, has statistical properties that can be readily ex-
pressed in terms of the time-bandwidth product of the mea-
surement. Specifically, TL is related to intensity level by theC. Historical notes

equation What is referred to here as the exponential-gamma dis-

H=—10loge")+K, (21)  tribution was apparently first derived by Dy&rfor an en-
tirely different purpose, namely to describe the “noise of
factor in dBre: 1 uPa and m that can be set to zero withoutf{numplfj distant fsfour(zjes. _H:)wevfr, :_he relzztlf)nsmp tl)e-
any loss of generality. Therefore, the probability distribution ween degrees of Ireedom, integration ime and temporai co-

for H is readily found to be exponential-gamma, so that theherence was not addressed, as is discussed further in the next
mean TL ' section. The distribution was later rediscovered by Bafakat

_ in an analysis of laser beam speckle patterns observed
(H)=—(10loge)[In(lg)+ () —In u], (22 through a finite spatial aperture. In Barakat's analysis, the
not only depends on the mean intensitybut also on the relationship between degrees of freedom, spatial aperture and
time-bandwidth product of the measurement. The TL stanSPatial coherence is derived in accord with Goodrifanis

whereH is measured in dBe: 1 m, andK is a conversion

dard deviation noteworthy that Pierce has arrived at a decibel standard de-
) - viation equivalent to 4.34sdft/w) dB for Gaussian random
(H%)—(H)*=(10loge)sarf{(2,)], 23 acoustic signals without exploiting the convenience of com-

on the other hand, only depends upon the time-bandwidtplex variables’ The derivation of the Gaussian asymptote of
product. When these moments are plotted as a functign of the exponential-gamma distribution follows the analysis of
as in Fig. 3, it becomes evident that Dyer's 5.6 dB TL stan-Arsenault and Aprfi® and Makris?®
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Ill. THE AVERAGE INTENSITY OF MULTIPLE tive way of eliminating out-of-band noise is to filter the total

INDEPENDENT CIRCULAR COMPLEX GAUSSIAN received field to the signal band, as is typically accomplished
RANDOM FIELDS with a matched filter.

When multiple independent CCGR fields are superposed
at a receiver, fluctuations in average intensity can once again L ) o
be described by the gamma distribution, as is shown in Se- Application to ocean-acoustic transmission

. . . statistics

[l A. The way that this extends and generalizes previous
statistical formulations for the “noise of multiple distant The distributions analyzed in Sec. Ill A of this paper,
sources” and a ‘“signal plus noise” is discussed in Sec.namely Eqs(9) and(15) with | defined for multiple sources,
Il B. also characterize the “noise of multiple distant sources”
studied by Dyer? However, there are substantial differences
between Dyer’s formulation and that given here. Specifi-

When multiple independerfields are superposed at a cally, the distributions defined in Eq&7) and (28) of Ref.
receiver, their individual variances, or equivalently their ex-12 were derived under the assumption that the intensity mea-
pected intensities, sum to the variance of the total fieldsured from each distant source is independent, exponentially
which constitutes the expected intensity at the receiverdistributed and comprised of a single tone spectrally disjoint
However, theintensitiesof the independent fields may not from the simultaneously measured tones of the other sources.
comprise mutually independent statistics of the measurememiowever, the condition of Ref. 12 that each source be of
except under certain special circumstances. “different frequency” is not sufficientto insure that the in-

To illustrate this situation, let the total received field tensity contribution measured from any one source will be
z(t)exp(—i2wf t) be the sum of independent CCGR fields independent of that measured from any other. atiditional
zj(t)exp(—i2mft), emanating from distinct sources or scat- requirementfor such independence is that the inverse mea-

A. The gamma distribution

terers, modulated at carrier frequenigysuch that surement time I7 must be less than the spectral separation
s between any of the contributing fields. Further, the intrinsic
t)= E (t 24 bandwidth of the field received from each source must be far
z(t)= 2, z(1). (24) L
i=1 less than I¥ for the measured contribution from that source

to be virtually instantaneous, as is necessary for its intensity
distribution to be approximately exponential. These require-

ments can be stated mathematically by expressing the time-
Sbandwidth product in terms of the spectrugi(f ) of the

total received field

Then it is readily verified with characteristic functions
thatz(t) is a CCGR variable with variande={|z?|) equal to
the sum of the variances of the(t), which are denoted
by I,=(|Z?|). The expected intensity of the superposed field
is then

s w®
e 1 sin(wT(f—f"))\? -1
;1la- (25 M:[ﬁffy/(f ).%’*(f’)(%) df’ df} ,
While the average intensity/ of the superposed fields, mea- o
sured during periodr, still obeys the gamma distribution (26)
<l ,u), the time-bandwidth produgt, as defined in Eq6),  which is simply another representation of ). The first
is now dependent upon the temporal coherence function dhtegration is a convolution which sets the number of inde-
the superposed fields. Furthermore, when the variand¥,of pendent frequency cells, while the second integration sums
namely ()% u, is expanded in terms of the intensities of thethese cells. The cells are measured in units @t e dis-
component fields, cross terms with factbils emerge. These tance from the apex of the sinc function to its first zero
cross terms appear because the instantaneous intensitiescofssing, in accord with the Rayleigh Criterion. Therefore,
the constituent fields are not independently superposed in ahe previous statistical description of “the noise of multiple
instantaneous measurement of the total field intensity. Amlistant sources,” based upon the assumption thairtten-
alternative proof of this is given in Appendix B. sities received simultaneously from the noise sources are
Suppose now that the desired sigag(t), with inten-  independent? comprises a special case of the more general
sity 14, is just one component among many received in gormulation provided here, where it is assumed thaffigids
noisy environment, where the noise fieldz{$) — z,(t), with received from the noise sources are independent.
intensity Iy=1—1,. Given the average intensity measure- The distributions for “signal plus noise” of the present
mentW, the SNR for the intended signal component thensection differ substantially from those given in E(¢33) and
becomesu(l,/1)?, which includes the effects of both addi- (35) of Ref. 12 for reasons similar to those just discussed.
tive noise and signal-dependent field fluctuations. Here, thélere, for example, TL for a “signal plus noise” field obeys
time-bandwidth producgk depends upon the coherence func-the exponential-gamma distribution with standard deviation
tion of the combined signal and noise fields. Consequently, if10 loge)sqr{(2,u«)] dB, where the time-bandwidth product
the additive noise extends over a much broader frequency is for a measurement of the combined fields with expected
band than the signal, stationary averaging will reduce théntensityl =1,+1y. Therefore, the TL standard deviation for
additive noise component of the variance \&f far more  a “signal plus noise” field never exceeds 5.6 dB as it may in
rapidly than the signal-dependent component. A more effecRef. 12.
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IV. THE AVERAGE OF INDEPENDENT GAMMA- with a minor change of variables, this equation describes the
DISTRIBUTED INTENSITY MEASUREMENTS probability distribution for partially coherent thermal

: oo light>® The mean ofx is still (k)=1,+1, while the vari-
In ocean-acoustics, there are many situations in Wh'CI?ance simplifies to

independent and presumably gamma-distributed intensity L o
measurements are averaged. For example, in displaying the (|a)2+(|ﬁ)2

L 2 2_

beamformed output of a hydrophone array, it is common (k) —(K)*= “ (30)
practice to reduce the variance by averaging the uncorrelated _
intensities received on adjacent nonoverlapping beédms. The kurtosis
Similarly, it is sometimes convenient to average independent T4, T4

: : o~ 6) (1))
multipath arrivals that are temporally disjoifftor to average £ =3+ =2 £ (319
independent measurements of backscatter to reduce the vari- w) L)%+ ()32
ance in scattering strength or target strength estimatidi.
) . - > and skew
investigate the statistical properties of such measurements, a
distribution is derived for the average of two independent 2 (|—a)3+(|_ﬁ)3
gamma-distributed intensity samples that may not be identi- +.=| —| =2 7 273/ (31b

Vi) L2+ (1p)?]

cally distributed. The asymptotic Gaussian form of this dis-
tribution is then generalized to describe the average of afhdicate that Eq. (29) converges to the Gaussian
arbitrary number of independent but not necessarily identi,-/l/'(<,<>,<,<2>_<K>2) for u>1, as a natural consequence of the
cally distributed intensity samples. This form is later used, incentral limit theorem.
Sec. VI, to quantify the maximum amount of information ~ When it is the average of the two measurements that is
that can be inferred about a desired parameter set from asf interest, the random variable must be redefined as
amalgamated measurement. x=(W,+Wy,)/2._This average is distributed according to
Let the average intensitie#/, and W, be independent  Eq. (29) but with | , replaced byl /2 andl ; by 1 /2. Assum-
and, respectively, obey the nonidentical gamma distributionsng the statistics across the two measurements are indepen-
G 4m,) and &l g,ug). The distribution for the sum  dent and ergodic, such that1,=1,, the averagec obeys
k=W, + W, is readily obtained as the inverse Fourier trans-the distributions(l,2u), as is consistent with a doubling of
form of the product of the characteristic functionsWdf, and  the time-bandwidth product of a constituent sample. By as-
W,. With the aid of tabulated integral transfordis? the  ymptotic analysis of Eq(29), a rigorous demonstration of
distribution for « is found to be this, and the case whely approaches zero, is provided in
— — Appendix C. Similarly, for an ergodic population of indepen-
(kpoll o) e(kpgll g)s expl — Hp p dent samples distributed according4dl,u), the average of
kD (pot mp) D samples of this population obeys(l,D u).
The more general scenario is the ensemble averaBe of

P(k)=
lg

< E b e K Mg Ha independent intensity measuremefts that, respectively,
171 Fao o™ Bpa K| 7 5 obey the nonidentical gamma distributioffg((W; ), u;). Let
B la . X
this be described by
for k=0, (27) L0
and zero elsewhere, wheye, is Kummer’s confluent hyper- k== W. (32
. . . D =1
geometric serie¥ The mean ofx is (K=l +14, and the
variance is For u;>1, the probability distribution fok converges to the
—, Gaussian 1 ({k),{k)>*—(k)?), where respective linear sum-
<K2>_<K>2:(Ia) + (Ig) _ (29 mations of the constituent means and variances lead to the
Ko Mg mean

It is often possible to make the simplification that the time- 1 D

bandwidth product of the two measurements is equal so that («)= ) 2 (W), (333
Me=pp= . The distribution for the suna, readily obtained =1

by convolution of the distributions fdW, andWy, is then and variance

" T T A\ 12 D 2
Vo | ux 1~ 15 1 W,
P(k)= £ ~ 2 ) (KA — (k)= >, (W) : (33b
F(/.L) Ia_lﬁ K Ialﬁ D =1 Mi
wr (1,+1,) pr (1,—1,) of the average, as follows from the independence of the con-
xexpl — — ——F- V1| — ~2 7] stituent measurements. If now eadh represents the aver-
2 lalg 2 g age intensity of5; independent CCGR fields, the expectation
for k=0, 29 value for eachW; is
S L
a_md zero eIs_ewh_ere, wherg ), is a mo_dlfled Bessel func- (W)= 2 I, (34)
tion of the first kind of ordern—1/2. It is noteworthy that, =1
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in accord with the analysis of the previous section. The util-converges to the Gaussiart ((A),(A%)—(A)?) for u>1,
ity of this representation will become evident in Sec. VI andwith mean

Appendix E, where a quantitative measure of the amount of T —olot 1.
a ATy

information that can be lost by such an averaging process, (a)= (399
common in ocean-acoustic applications, is presented. (At)
and variance
V. THE RATE OF CHANGE OF AVERAGE INTENSITY 5 X (|_a)2+(2|_ﬁ)2+(|_y)2
It is sometimes possible to infer the velocity of a moving M

source or scatterer from a series of incoherent intensity mearo compute higher-order derivatives, well-known finite dif-
surements or imageé8.When this is possible, it is necessary ference equations can be usédHowever, the variance is
to compute the time rate of change of measured intensity bgroportional to the weighted sum of the variances of the
the method of finite differences. While such a velocity esti-constituent measures, and gains positive terms linearly with
mate may also require computation of finite differences inthe order of the derivative to be estimated. Therefore, for
space to account for advection in the image plane, the difixed u, the SNR of the derivative estimate typically de-
tinction between temporal and spatial domain is not cruciatreases as the order of the derivative increases.
to the present statistical analysis.

Suppose two consecutive averaged intensity measure-
mentsW, and W, are separated by a time intervat long VL. THE RESOLUTION OF PARAMETERS
enough to insure that they are independent. Let these mea- pgrameter resolution is highly dependent upon the way
surements obey respective nonidentical gamma distributiongat intensity measurements are made. To show this, classi-
% (l4.m) and (I g,u). The random variable for intensity ca) parameter resolution bounds and Fisher information ma-
rate is then defined by the difference quotientysices are derived for the various kinds of measurements ana-
V=(Wz—W,)/At. Its probability distribution is readily ob- |yzed in previous sections. In particular, the logarithmic
tained by inverse Fourier transformation of the relevant charmeasures commonly used in ocean acoustics, such as scat-
acteristic functions. With the aid of the tabulated integraltering strength, target strength and TL, must be derived from

transforms’ the distribution forV is found to be a corrected version of the sonar equation that accounts for an
1 uVIAt\#[ pAt (|_a+|_ﬁ) 12 inhe_rent b_ias dependent on the_timg-bandwidth product of
P(V)= i — the intensity average. The logarithmic measures then have
D) \latlg) N7V 1l mean-square errors that approximate the Cramer—Rao lower
— — bound(CRLB) with increasing accuracy for increasing time-
Xexp{ _ '“_At Mlﬁ_—_laﬂ] bandwidth product. Additionally, it is shown how informa-
2 lol g tion can be lost by certain widely practiced procedures for
S — reducing a set of independent samples to a single mean sta-
pIVIAL (1, +1p) tistic, as is often done in ocean-acoustic processing.
V2 2 Lol g Suppose that a genefid},-dimensional parameter vector

a is to be estimated from thbl-dimensional measurement
for —o<V<o, (35  vectorY. According to estimation theory,the mean-square

whereKy,_, is a modified Bessel function of the second error of any unbiased estimate, based S{éon measurement
kind of order 1/2-u. The mean igV)=(I ;—1,)/At and the vectorY, can never be less than the CRLB

variance is EL(&—a)?]=[3 7X@ ;. (40)
(I_a)2+ (E)2 whereg; is the true parameter value ad@) is theN, by N,
<V2>_<V>zzw- (36)  Fisher information matr with elements
. . . 2
The kurtosis#y,, given by the right-hand side of E¢313), v
and skew Ji(@=-E da; Ja; In P(Yla)|. (41)
2 (|_;;)3—(|_a)3 A. Information in intensity and log-transformed
sy= NP [(|a)2+—(|ﬂ)2]3/2’ (37 intensity measures

- . Suppose the parametaasre to be estimated from a set
”jﬁ'.&a\l;(; <\;21>a i <\I/E>%) (f::; ‘? ;invi?lr%iior(tjowimetheG?grS]tern of N independent gamma-distributed intensity measurements
'I/i/mit the,orem K= W, contained in the vectd. Because no information is lost

) in the homomorphic transformations =In(W,/I ), where

thr Tomobta|p ::enfeccr)ni tlrr&edd?fn;/ﬁtlve Orf mtensI:A(,, th(iLk comprise the vectok, the Fisher information matri-
€€ measurements are needed. €se are equally SPaGES for measuremenw andL are identical and equal 1

in time, the distribution of
N

W, —2W,+W LS M @ @ i
= _ (At)ﬁ 7’ (39) lj(a) kgl (Ik(a))z 2, 72, (42)
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as shown in Appendix D. This expression exhibits behavior =~ The familiar sonar equationa=(10 loge)[L+Q],
that should be expected in a measure of informationtherefore, is only valid in the deterministic limit of large
Namely, information is positive semidefinite, and the infor- The corrected sonar equation given in E4p) includes the
mation contained in a joint set of independent measurementdditional terms necessary to account for jia€lependent
equals the cumulative information of all the individual mea-bias introduced by an exponential-gamma-distributed
surements. Consequently, the CRLB on parameter resolutiantensity-level measurement and is therefore the more gen-
is only singular when the Fisher information for all joint eral form.
measurements is zero, as is evident by inspection of the par-
ticular case given in Eq42). C. Information in the average intensity of superposed
Although both intensity measurements and their log-fields

Lo o e Sare ralon, 1 momallon  The siuaion becomes more complex when el
tion values is substantially different. For example, given the% easures the average |nte_n5|ty of & superpositic m de-
single gamma-distributed measurerﬁb\htthe CRLB, for es- pen_dent CCGR f|elds_, as in Sec. lll where rece_pt|on of the
timation of | is simply the variance of the measurement“m.)lse .Of muIt_|pIe distant _sources” and a “5|gna| pIu_s

I Prrallit . ; noise” is considered. In this case, the Fisher information
J7 () =(1)*/w, so that the measuremantitself attains the

CRLB as an unbiased estimate lof matrix of Eq.(42) becomes

The situation, however, is different for logarithmic mea- S <S5 aﬁk(a) ,9|_rk(a)
sures. By straightforward manipulation of E2), the N MKl l g a—a- 7
Fisher information for the measuremend$ or L can be Ji(a)=2, ! J (46)
. 5 1] — Sk 2
rewritten a$ k=1 (25, k()]
N ALy (L) This form is useful because it explicitly shows how informa-
‘]ij(a):kzl MK a0 aa (43 tion partitioned among the component fields is incorporated
= i j

in an intensity measurement of their combination. Addition-
with the understanding that thg do not depend oa. Given  ally, it should be understood that in such a measurement,
the single exponential-gamma-distributed measurentent some information carried by each individual field is lost.
the CRLB for estimation ofL) therefore is]~*((L))=1/u.  This is shown explicitly in Appendix E.

While the variance ok is approximately equal to this bound

even foru=1, it only converges to it in the asymptotic limit D. Information in amalgamated intensity averages

of large u, as shown in Sec. Il. The CRLB, therefore, can
only be attained asymptotically for parameters linearly re-
lated to the expected value of intensity level. One shoul . : .
realize, however, that for practical purposes such asymptoti ¥ and V, is most readily obtained by the methodology of

convergence occurs for relatively smal] as noted in Sec. ef. 37. Spe0|f|(_:ally, suppose the param_etermly depe_nd
I on the expectation valued =(Y). Then, given expressions

for M andJ(M), the Fisher information matrid(a) can be
obtained from the equatich

T
B. The corrected sonar equation Jij(a)= % J(M) %'
i i

Fisher information for measurements obeying more
omplicated distributions, such as those described in Secs.

(47)
If the estimate, based upon the exponential-gamma- _ _
distributed measuremeht is for the unknown decibel quan- Along these lines, consider the amalgamated avekagfeD

tity independent gamma-distributed measurem@¥tshat each,
_ respectively, sample the intensity 8f independent super-
a=(10loge)[In lo+€Q0], (44 posed CCGR fields, as described in Sec. IV. For the joint
as it often is in practice, wher@, is some known constant, Measurements di such independent sampleg, the Fisher
the unbiased estimator information matrix is given by
a=(10loge)[L+Qo—¢(p)+In p], (45) N EDflﬁsﬂklED‘ilESTkl N qrk(8) Il mnK(@)
only converges t@10 loge)[L +),] in the asymptotic limit s@=3 amsormemEan 93 Ja
of large u, Whe{/e2 it also attains the CRLB on root-mean- g e o, [Ets':kl'_nk(a)]z

square errorJ” “'4a)=(10loge)sqr{1/u]. The more fre- o1

quently encountered estimat¢t0 loge)[L +()], however, Hik

has a negative bias that decays frer@.5 dB atu=1 to zero (48)
along the curve (10loge)[{w)—In u] as the time- While this expression is certainly cumbersome, it is not with-
bandwidth producj increases. Misguided use of this biasedout practical value. In particular, E¢48) not only quantifies
estimator in reverberation analysis, for example, can lead one information contained in the kind of amalgamated inten-
to draw the erroneous conclusion that scattering strength irsity measurements that are widely used in ocean acoustics,
creases with the time-bandwidth product of the measurebut also expresses this information in terms of constants of
ment. both the measurement process and constituent fields. The

779  J. Acoust. Soc. Am., Vol. 100, No. 2, Pt. 1, August 1996 Nicholas C. Makris: Saturated transmission scintillation 779



amount of information lost in such an amalgamation, how-VIl. CONCLUSIONS

ever, can be significant, as is shown in Appendix E. Coherence theory is used to analyze the statistical prop-
For illustrative purposes, consider the case when only @rties of ocean-acoustic intensity fluctuations measured after
single parameter is to be estimated from a single measureaturated multipath propagation. Previous analyses in this
ment, and that parameter is either the expectation value @frea have been implicitly limited to certain special cases for
the measurement or is linearly related to it. Given the amalwhich the time-bandwidth product of the field measured
gamated measuremeky the parametely;, representing the from a given source is unity. In this paper, the intensity
expected intensity of a single field component of the respecstatistics of the saturated region are extended and generalized
tive intensity sampléV,, cannot be resolved better than  to be a function of the measurement time and temporal co-

D S T a2 herence of the received field. The resulting intensity distri-

— (23, 1h(@)] . .
I Y= ————. (49)  butions are therefore highly relevant to modern ocean-
=1 M acoustic sonar and communication systems which employ

This bound equalB2J~1((«)), and therefore is proportional time-bandwidth products that often exceed unity, or average
to, but potentially much greater than the variance of the?Ver many independent samples. L
amalgamated measuremeatlf such amalgamation cannot Mo.re general expressions are .qlso offgrgd for the “noise
be avoided, accurate estimation of the intensigyrequires of m_ult|ple distant sources.” Specnjcally, it is shown _that a
the time-bandwidth products of the constituent gammaPrevious and well-known assumption used to describe this
distributed intensity samples to be sufficiently large that ~ N0iSe, that thentensitiesreceived simultaneously from the
greatly exceeds sqd[ (1,7)]. noise sources are mutually independent, is a special case of
In many practical scenarios in ocean-acoustics, howevef€ more general assumption adopted in this paper that the
such amalgamation cannot be avoided. Consider, for exieldsreceived from the noise sources are independent.
ample, a problem encountered in remotely imaging the ocean 1h€e statistics of averages of independent intensity
basin with an active towed-array systéfReturns from samples are then exgmmed_because such ama!gamanon is
shadow-zone sites, which lie between convergence zoneSommonly employed in a variety of ocean-acoustic measur-
generally arrive in time so that no particular path to the seal’d Systems. The statistics of intensity rate measures ob-
floor makes a dominant contribution during a given measuret@ined by finite difference are also examined to address the
ment period. These returns may also arrive simultaneousl{FSue of monitoring a moving source or scatterer. _
and consecutively during the measurement, leading to an A brief d'.SCUSS.'OH of _ClaSSIcal parameter.re§olu't|on
amalgamated average of the intensities of superposed af@unds and Fisher information for the various distributions
temporally disjoint fields. In such cases, it is often difficult to €ncountered is provided. This is used to show that parameter
obtain sufficiently large time-bandwidth products to resolveresolution is highly dependent upon the way that intensity
the mean contribution of a particular seafloor patch. Return§'€@surements are made. For example, the logarithmic mea-
from shadow zone ranges can then be adequately describ8H'®S commonly used in ocean acoustics, such as scattering

as clutter because they hinder presently known means oftréngth, target strength and TL, must be derived from a
inferring geomorphological features of the ocean basin. corrected version of the sonar equation that accounts for an

inherent bias dependent on the time-bandwidth product of
E. Information in intensity-rate measures the intensity average. This bias attains its maximum ma'\gni-
) ) _ ) tude of 2.5 dB for an instantaneous sample and only vanishes
Finally, consider the intensity rate measurementp the deterministic limit of large time-bandwidth product.
V=(Wz—W,)/At, of Sec. V, where bottW, andW; are  The |ogarithmic measures then have mean-square errors that

gamma-distributed. By application of E¢47), the Fisher  approximate the Cramer—Rao lower bound with increasing
information matrix forN independent measurements of in- accuracy for increasing time-bandwidth product.

tensity rateV, is Finally, a quantitative measure is given for the amount
al_ﬁ (a) (?—a (a) ‘9|_B (a) <9|_a (a) of information that can be lost by certain widely pract|c.ed
Lk k k k k procedures for reducing a set of measurements to a single
3@ % aa; g, 93, 93, mean statistic. Such reduction is often employed in ocean-
(a)= — — . . . .
ij acoustic processing but may be detrimental to subsequent
= [l (@] +[1 ()] P g y a

parameter estimates.

APPENDIX A: EULER’S PSI FUNCTION AND
RIEMANN'S ZETA FUNCTION

(50

Evidentially, the information about some paramedgrcon-
tained in an intensity-rate measuremeggtmay vanish when

the expectation value o¥, is zero even if the parameter Euler's psi function is defined BY
could be uniquely determined from the constituent measure- * 1 1
mentsW,, or W, . A substantial amount of information, l/f(M)Z—C—kZO Ak ke1) for real u, (A1)
therefore, can be lost when independent measurements are a1
reduced by a finite difference process. It is easy to verify, B .
however, that no information about the expected valu¥,of B C+|Z‘1 k' for integer n>1, (A2)
is ever lost when a joint measure\M, andW,; is replaced
by V : * Pr P =-C, for u=1,
k.
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whereC is Eulerls constant, e 2\/; 2 MKz,rl
. ~
1 1
C= lim | S ZoInu!=0577215... . (A3) Tlpt2)T(w) 14l p
m—x k=1 k _—
Riemann’s zeta function is defined By Xexp — uk PG (CY
a' B
§(v,M)=E 1 ' After applying Gauss’ multiplication formula for gamma
k=0 (nt+k)” functions,
for v>1, u#0,-1,-2,—3,... . (A4) n-1 K
M F(nX):(27T)1/2(1—ﬂ)nﬂ)(—1/2[[ F(X+ ﬁ , (CZ)
k=0
APPENDIX B: VARIANCE OF THE INSTANTANEOUS ]
INTENSITY OF A SUPERPOSITION OF for the casen=2, and transforming the sur=W,+W, to
INDEPENDENT CCGR FIELDS the average«=(W,+Wp)/2, it is readily verified that Eq.
(CD reduces to
Following Sec. Ill A, the instantaneous intensity for a — L, 4 —
sum of independent CCGR fields can be written as _ Qui) ™k exp{ —2ukl1}
P(x)= : (C3)
s s I'(2u)
(=2, z(1) > Zf (1), (B1)  whenl=1,=1,. It is noteworthy that Eq(C3) also corre-
=1 =1 sponds to the probability distribution for unpolarized thermal
with expectation value light.

s Similarly, asn becomes sufficiently large, the modified
(1)=E :2 E[|z(1)|2] (B2) Bessel function takes the fory( ) ~ e7/\2m 7. Applying

i=1 ' ' this to Eq.(29) for the casd ,> 1, the asymptotic distribu-
where the last equality follows from the independence of thepon 'st'?ply'f(l.“t’“)]; Th?.se limits may also be verified by
fields. The squared intensity has expectation value Us€ of characterstic functions.

S

S
2, ()2, 71

=1

s s s s
2\ * *

<I > E i;l Zl(t)jzl 4 (t)gl Zk(t)lzl 2 (1) APPENDIX D: FISHER INFORMATION FOR

s s 3 S INDEPENDENT GAMMA AND EXPONENTIAL-GAMMA-
—E 2 Zi(t)z ZJ-*('[) E 2 Zk(t)z Zr(t)} DISTRIBUTED MEASUREMENTS
=1 =1 K=t =1 As noted in Sec. VI, the Fisher information for the joint
S S S S gamma-distributed measurement$, obeying the condi-
+E kzl Zk('t)]_Z1 ZF (1) |E .21 Zi('t)lzl Zr (1), tional probability distribution

B pwla- ﬁ (i 1(@) W exp — Wi/ 1 (@)}
where the second equality follows from CCGR moment k=1 ()
factoring? Using Eq.(B2), this can be written as (DY
s 2 is the same as that for the exponential-gamma distributed
<|2>:2( 2 E[|zi(t)|2]) ’ (B4) measurementk, obeying the conditional distribution
- e | exp(Ly)
so that the variance is the square of the sum of the expected N exp{ T Mk = +,uk|-k]
intensities of the superposed fields 3 o (2) lo,(a)
P(Lla=]1 .
S 2 k=1 I'(p)
<|2>—<|>2=(21 Euzi(t)m) . (B5) (02)
=

It is possible to demonstrate this by inspection of Et)
with the additional knowledge that the matrickgw)) and

PROBABILITY DISTRIBUTION OF THE SUM OF TWO J((L)) have respective inverses that take the form of the as-

INDEPENDENT GAMMA-DISTRIBUTED INTENSITY ymptotic covariances oV andL in the Gaussian limit of
MEASUREMENTS large w, . For example,J(W)) andJ({L)) areN by N diag-

onal matrices with respective elements
When the expectation values of the two independent in- I .
tensity samples of Sec. IV are nearly equak1 4, the as- Ji (W) =pil(1)78i; . and Jjj (L)) = i -
ymptotic form| (7)~(%/2)"/T'(v+1) for small argumentsy The more straight forward approach prescribed by Eq.
may be substituted for the modified Bessel function in Eq.41) is instead presented. For the Fisher information matrix
(29), assumingy is not a negative integer. The resulting dis- given the measuremenid/, substitution of the right-hand
tribution for the sumk=W,+ W is then side of Eq.(D1) in to Eq. (41) yields

APPENDIX C: LIMITING FORMS FOR THE
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N W, The corresponding Fisher information is then
Jj(@=—E 2 In I+ — (D3) —,
k= &aj | K 5'
o . Jjoin(@) = E vl e (E2)
Application of the derivative operator with respect @9 (1 )
leads to Following Sec. VI C, the Fisher information for an instanta-
N neous measurement of the sanof the fieldsz; is
Jj(a) ( L ) T o
! =N TN 1 (a3
_ o Jad@)=—5—; | — 2 1j] . (E3)
Taking the derivative with respect & leads to (241" \oai=1
N W, aly ol where this information is unchanged if 'rne sars replooed
Jij(a)=E Z W 7Y da sa by z/S. As a consequence of the positive semidefiniteness
B of expected intensity and the presence of squared terms, the
=1 Uk k ae f d d th f d h
o ﬁzﬁ following relationship must hold true
+(l— — |
(=W 72 (DS5)

S < liali 1 al;\°
. . . , [z > (1—5ij)(— ——'—T> ]
Finally, application of the expectation value operator yields| =1 j=1 Iy da I; Ja
Eq. (42) which can be rewritten as — 2/ 5 |
1 aly
[ (—— (2 2 (1= 8m)2lilm )Jao, (E4)

_ _ _ where g; is the Kronecker delta. By straight forward alge-
Here, I, (a) can be replaced by, (a)=1,(a)/l  to reference  braic manipulation of relatiofE4) it can be shown that
the logarithmic measure to physical units without altering the
Fisher information. joint(2) = Jsunf @) (E)

For the Fisher information matrix given the measure-Therefore, the joint measurements of Bdields z; contain
mentsL, substitution of the right-hand side of E@P2) into  more information than a single measurement of the gwh
Eq. (41) yields these fields. When these fields are identically distributed, the

d Inl_k(a) d Inl_k(a)
0a; &aj ’

N
Ji,-ra)=k§1 m (D6)

_ explly) joint measurements contain precis&lyimes the information
Jj(a)=—E E — e — (In Lo + K ) ] of the sum. More generally, dividing the left-hand side of
da; i Ja K lo, relation (E4) by
(D7) _\2
BecauseW,/I s equals expl(,) by definition, andl; does (2 Ik) , (E6)
not depend o, Eq. (D7) is identical to Eq(D3). Therefore, k=1
Eq. (D7) reduces to gives the information about parametrthat is lost by re-
N P Ini(a) P Ini(a) taining tne sum .rather than the joint measuremento:
J(a)= z L k k , (D8) Srrnr_larly_, given scalar p_a_rametm, the condr_tronal
k=1 g, 93, probability distribution for the joint measurementDfinde-

which equals Eq(D6) as expected. pendent gamma-distributed intensity measureméisis

It is noteworthy that Eq(D6) can be obtained directly grven by the product
from the Gaussian form d?(W|a) or P(L|a) in the asymp-

totic limit of w>1, as is consistent with the fact that both H Pw (W;la). (E7)
the intensity measuremefV and intensity level measure- =
mentL contain the same information. The corresponding Fisher information is then

2 8(W>
APPENDIX E: THE LOSS OF INFORMATION IN Fioin@) = 2 w2 : (E8)
COMBINING NONIDENTICALLY DISTRIBUTED FIELDS =1
OR INTENSITIES when the time-bandwidth product of eadh equalsu. Fol-

It is well established that the Fisher information matrix lowing Sec. VI D, the Fisher information for the averagef

for a joint set of independent measurements equals the suFHeSGD gamma-distribuied intensitiad) is

of the Fisher information matrices for each individual 2
measurement*8-3°For example, given scalar parameter P averagh®d) = <W 2 | 72 2 (W;) (E9)
the conditional probability distribution for the joint measure- =1
ments ofS independent and instantaneous CCGR fig/ds  The following relatronshrp must hold true:
given by the product D i (W) AW (W) a(W ) 2
S [22(1—5”)( W aa T aj) Jao
11 P.(zla). (ED) S (W) oa (W) da
A (E10
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